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• The particle track reconstruction problem and data set

• The embedding within the data processing pipeline 

• Quantum circuit model architectures and training results

• Comments on future improvements
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and particle track reconstruction
Large Hadron Collider (LHC)

An event view from ATLAS Experiment

https://atlas.cern/updates/atlas-news/counting-collisions

https://cds.cern.ch/record/2315786
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TrackML Dataset
https://www.kaggle.com/c/trackml-particle-identification/overview

Contains: 10k collision events  (200 soft QCD interactions) 
(arXiv: 1904.06778)

Retrieved from: Farrell et al. 2018 (arXiv: 1810.06111) 

endcaps produce a lot of ambiguity and therefore many track 
candidates, we omit endcaps as we want to limit our model to 

simpler cases.
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The data processing pipeline

Learning the embedding of the hit data set

Hinge Embeddig Loss:

First preprocessing steps 
of the data set

Embedding of pairs of 
hits (doublets): 𝚽(xi , 𝜃) in 
4D embedding space

Graph construction and 
classification with 
(quantum) GNN

true or false 
edge (indicated 
by label yi,j )

hit i (xi)

hit j (xj)

A doublet in original 
space.  

Similar to Choma et al. 2020 (arXiv: 2007.00149) 
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General model of the hybrid 
architecture

Classical MLP 
(hidden layers: n_layers x 512)

3D Input Data (hits)

Quantum Circuit Fully Connected Layer

4D Output Data in Embedded 
Space
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MLP adapted from: Choma et al. 2020 (arXiv: 2007.00149) 

learn the representation 
within the quantum 
circuit measure the qubits 

project classical output 
onto preferred 
embedding dimension

Hybrid Neural Network architecture
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Quantum Circuit Approach

- these quantum circuits were chosen due to their 
different values regarding entanglement and 
expressibility 

- the 4-qubit quantum circuits encode the output 
of the classical MLP as angles within the 
rotational gates displayed

Circuits adapted from and values calculated as in: Sim et 
al. 2019 (arXiv:1905.10876)Carla Rieger 7



Quantum Feature Map Approach (QFM)
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- QFM iteratively encodes the input xi
- additionally, there are optimizable 

parameters 𝜃 included within the quantum 
circuit

- repeating blocks of the circuit as indicated 
on the left increases the entanglement and 
decreases the expressibility value, which 
is preferable

Adapted from: Lloyd et al. 2020 
(arXiv:2001.03622) 8

Ent./Expr. values calculated as in: Sim et al. 2019 (arXiv:1905.10876)



Quantum Circuit Approach
Training results

Training data set: 8k hits, validation data set: 2k hits, using ADAMAX optimizer, n_layers = 10, hinge embedding loss, lr = 1e-2.

- training time proportional to number of gates in the 
quantum circuit

- observation of plateaus in training/validation loss for 
circuit 5, which includes the highest number of QC 
parameters in this test 

Carla Rieger Ent./Expr. values calculated as in: Sim et al. 2019 (arXiv:1905.10876)* mean and indicated std of 3 independent runs, plot without 
circuit 5 run 3 for better visualization

*
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QFM Approach

Training data set: 8k hits, validation data set: 2k hits, using ADAMAX optimizer, hinge embedding loss, lr = 1e-3.

- learning rate has to be lowered using this architecture 
by factor 0.1

- similar performance of 1 and 4 layer version, as well as 
for 8 and 10 classical layers

- validation loss converges to high validation loss for low 
number of layers 

- std much higher when training with less classical layers
- possibility for better convergence when training for more 

than 100 epochs (especially for 8 and 10 layers)

Carla Rieger Ent./Expr. values calculated as in: Sim et al. 2019 (arXiv:1905.10876)

*

* mean and indicated std of 2 independent runs

Training results
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Conclusion

How to improve?

● test different quantum encoding schemas

● explore more quantum circuits

● explore different architectures

● train on more doublet data

Challenges

● quantum models are hard to simulate and 
the simulation times are long, especially for 
larger models that include more trainable 
parameters

Things to explore

● explore effects when training with real 
hardware and noise models

● test non-hybrid quantum architectures
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Thank you.
Email: carieger@ethz.ch

Results shown here will be published soon, with a complete overview. 
The most recent version of the code will be published under https://qtrkx.github.io.
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Backup Slides
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Q.C. for Machine Learning

We can use parameterized 
gates to embed data in the 
Hilbert Space.

Then, we can use other 
parametrized gates that we 
can optimize to do tasks 
such as classification.

Train Classify

Parameterized Gates

Adapted from: Sim et al. 2019 (arXiv:1905.10876)

Adapted from: Lloyd et al. 2020 (arXiv:2001.03622)
Carla Rieger 15


